V_{bias} supply → detector board Vbias to det. board I_{bias} monitored: voltage drop across 1 MΩ (Keithley 2700 10 MΩ impedance) - V_{bias} input into bias distribution box: 6 channels, I_{bias} monitoring - Sent to preamp box at vacuum flange, detector board Total supply→detector board: 2 MΩ ## α-gain vs. I bias Observed correlation: - @ 0 μA, gain = 0.144; @ -30 μA, gain = 0.112 0→-30 μA relative gain reduced to 78% - 30 μ A × 2 M Ω = 60 V, reduction in bias voltage at detector board ## α -gain vs. V_{bi} no beams I_{bias} ≈ 0 - @ nominal 110 V α-peak = 155 ADC - @ 110-60 = 50 V α -peak = 125 ADC - relative gain reduced to 81% - The voltage drop across 2 M Ω in series accounts for relation α -peak vs. I hias